2019 AIME I 真题

2019 AIME I Problems

Problem 1

Consider the integer

IMG_256

Find the sum of the digits of IMG_257.


Problem 2

Jenn randomly chooses a number J from 1, 2, 3, ..., 19, 20. Bela then randomly chooses a number B from 1, 2, 3, ..., 19, 20 distinct from J. The value of B - J is at least 2 with a probability that can be expressed in the form img3, where m and n are relatively prime positive integers. Find m + n.


Problem 3

In PQR, PR = 15QR = 20, and PQ = 25. Points A and B lie on IMG_275, points C and D lie on IMG_278, and points E and F lie on IMG_281, with PA = QB = QC = RD = RE = PF = 5. Find the area of hexagon ABCDEF.


Problem 4

A soccer team has 22 available players. A fixed set of 11 players starts the game, while the other 11 are available as substitutes. During the game, the coach may make as many as 3 substitutions, where any one of the 11 players in the game is replaced by one of the substitutes. No player removed from the game may reenter the game, although a substitute entering the game may be replaced later. No two substitutions can happen at the same time. The players involved and the order of the substitutions matter. Let n be the number of ways the coach can make substitutions during the game (including the possibility of making no substitutions). Find the remainder when n is divided by 1000.


Problem 5

A moving particle starts at the point (4, 4) and moves until it hits one of the coordinate axes for the first time. When the particle is at the point (a, b), it moves at random to one of the points (a - 1, b), (a, b - 1), or (a - 1, b - 1), each with probability img7, independently of its previous moves. The probability that it will hit the coordinate axes at (0, 0) is img8, where m and n are positive integers, and m is not divisible by 3. Find m +n.


Problem 6

In convex quadrilateral KLMN, side IMG_306 is perpendicular to diagonal IMG_307, side IMG_308 is perpendicular to diagonal IMG_309, MN = 65, and KL = 28. The line through L perpendicular to side IMG_313 intersects diagonal IMG_314 at IMG_315 with KO = 8. Find MO.


Problem 7

There are positive integers x and y that satisfy the system of equations log10 x + 2log10(gcd(x, y)) = 60log10 y + 2log10(lcm(x,y)) = 570. Let m be the number of (not necessarily distinct) prime factors in the prime factorization of x, and let IMG_324 be the number of (not necessarily distinct) prime factors in the prime factorization of y. Find 3m + 2n.


Problem 8

Let x be a real number such that IMG_328. Then IMG_329 where m and n are relatively prime positive integers. Find m + n.


Problem 9

Let IMG_333 denote the number of positive integer divisors of n. Find the sum of the six least positive integers n that are solutions to IMG_336.


Problem 10

For distinct complex numbers z1, z2, ..., z673, the polynomial (x -z1)3(x - z2)3 ... (x - z673)3 can be expressed as x2019 + 20x2018 + 19x2017 + g(x), where g(x) is a polynomial with complex coefficients and with degree at most 2016. The value of IMG_342 can be expressed in the form img22, where IMG_344 and IMG_345 are relatively prime positive integers. Find m + n.


Problem 11

In ABC, the sides have integer lengths and AB = AC. Circle ω has its center at the incenter of ABC. An excircle of 

ABC is a circle in the exterior of ABC that is tangent to one side of the triangle and tangent to the extensions of the other two sides. Suppose that the excircle tangent to IMG_353 is internally tangent to ω, and the other two excircles are both externally tangent to ω. Find the minimum possible value of the perimeter of ABC.


Problem 12

Given f(z) = z2 - 19z , there are complex numbers z with the property that zf(z), and f(f(z)) are the vertices of a right triangle in the complex plane with a right angle at f(z). There are positive integers m and n such that one such value of z is IMG_366. Find m + n.


Problem 13

Triangle ABC has side lengths AB = 4BC = 5, and CA = 6. Points D and E are on ray AB with AB < AD < AE. The point F  C is a point of intersection of the circumcircles of 

ΔACD and  ΔEBC satisfying DF = 2 and EF = 7. Then BE can be expressed as img27, where abc, and d are positive integers such that a and d are relatively prime, and c is not divisible by the square of any prime. Find a + b + c + d.


Problem 14

Find the least odd prime factor of 20198 + 1.


Problem 15

Let IMG_392 be a chord of a circle ω, and let P be a point on the chord IMG_395. Circle ω1 passes through A and P and is internally tangent to ω. Circle ω2 passes through B and P and is internally tangent to ω. Circles ω1 and ω2 intersect at points P and Q. Line PQ intersects ω at X and Y. Assume that AP = 5, PB = 3, XY = 11, and IMG_415, where m and n are relatively prime positive integers. Find m + n.


扫码关注【FamousEdu名学竞赛帮】公众号了解更多